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The synthesis of novel porphyrin trimers covalently linked by one central, rigid triptycene unit is
described. Reaction of 2,6,14-triiodotriptycene, generated in a three-step synthesis from triptycene, with
borylated porphyrins under Suzuki cross-coupling conditions afforded porphyrin trimers. In addition,
Sonogashira cross-coupling conditions could be successfully applied for the synthesis of trimeric porphy-
rin arrays as well.

� 2008 Elsevier Ltd. All rights reserved.
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Porphyrin assemblies with highly conjugated p systems have
attracted considerable attention as promising organic materials
for electronic devices,1,2 and there has been increasing interest in
the design and construction of porphyrin arrays with well-defined
geometries for this purpose.3 Multi-porphyrin architectures are
desirable systems as they provide rigid molecular machinery
frameworks via relatively straightforward synthetic pathways. In
nature, the antenna chlorophylls in photosynthetic bacteria are
arranged as macrorings to absorb and transfer solar energy
efficiently.4 This biological importance of circularly arranged
multi-porphyrin arrays makes them an attractive research target.

Whilst significant advances in this area have been made with
regard to synthetic methodology, the current focus is more on
rational building strategies and the use of appropriate scaffold
units that define the orientation of the chromophores in space,
and can be used as components for molecular machineries. In this
context, the triptycene unit is a convenient molecular scaffold to
construct rotationally oriented light harvesting devices.

The first porphyrins with triptycene substituents were reported
by Wasielewski and Niemczyk in 1984.5 A quinone substituent was
incorporated into the triptycene group, such that the functional-
ised molecules possessed a porphyrin electron donor and a
quinone electron acceptor. The resulting porphyrins were used
for the study of photoinduced electron transfer reactions, as they
represented model systems with well-defined donor–acceptor dis-
tances and orientations.6–8 Osuka et al. later described the first
porphyrin oligomer in which three porphyrin units were attached
to one benzene ring.9a The porphyrin trimers were obtained after
an 11-step synthesis in overall yields of 13%.

Herein, we describe a straightforward synthetic pathway for the
preparation of porphyrin trimers in which each porphyrin unit is
ll rights reserved.
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covalently linked to one central triptycene residue via Suzuki or
Sonogashira cross-coupling reactions.9b

First, commercially available triptycene 1 was reacted with
nitric acid under reflux conditions to give 2,6,14-trinitrotriptycene
2 in 81% yield according to a procedure by Zhang and Chen10 The
nitro residues were subsequently reduced to amino groups to
afford 2,6,14-triaminotriptycene 3. Finally, Sandmeyer reaction of
3 resulted in the formation of 2,6,14-triiodotriptycene 4 in an over-
all yield of 61% (Scheme 1).

In the past, Suzuki cross-coupling reactions with borylated
porphyrins as synthons had been successfully carried out.11–14

The requisite borylated porphyrins 8–10 were prepared from
bromoporphyrins 5 to 715 via Pd-catalysed reaction with 4,4,5,5-
tetramethyl-1,3,2-dioxaborolane (pinacolborane). Debromination
of the starting material was a competitive reaction, thus a ten-fold
excess of pinacolborane was used. The borylated porphyrins 8–10
were obtained in 51%, 29% and 48% yields, respectively.16 In the
NH2I 34 61%

Scheme 1. Three-step synthesis of 2,6,14-triiodotriptycene 4.
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4,4,5,5-tetramethyl-1,3,2-dioxaborolane,
PdCl2(PPh3)2

Pd(PPh3)4
K3PO4

4

8 M = Ni(II), R1 = R2 = Phenyl   51%
  9 M = Zn(II), R1 = R2 = Phenyl   29%
10 M = 2H, R1 = Tolyl, R2 = Butyl    48%

11 M = Ni(II), R1 = R2 = Phenyl   22%
12 M = Zn(II), R1 = R2 = Phenyl   18%
13 M = 2H, R1 = Tolyl, R2 = Butyl   16%

Scheme 2. Synthesis of triptycenyl-linked porphyrins via Suzuki cross-coupling reaction with 2,6,14-triiodotriptycene.
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next step, compounds 8–10 were reacted with 2,6,14-triiodotripty-
cene 4 under Suzuki cross-coupling conditions. Following work-up,
the desired porphyrin trimers 11–13 were isolated in 22%, 18% and
16% yields, respectively17 (Scheme 2). The yield of the free base tri-
mer is comparable to that of the metallated trimers, which implies
that this reaction is generally applicable to different porphyrin
systems.
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Scheme 3. Synthesis of porphyrin trimer 15 via Sonogashira cross-coupling.
As a second pathway for the synthesis of porphyrin trimers
covalently linked by one triptycene unit, Sonogashira cross-
coupling conditions were employed. Sonogashira reactions with
porphyrins have been applied widely, and proved successful here
as well.18–21 The ethynylporphyrins 14 and 16 were used as
porphyrin units15 and reacted with 2,6,14-triiodotriptycene 4.
The reactions were carried out with Pd2dba3 as catalyst in dry
THF at reflux under an argon atmosphere (Schemes 3 and 4). The
desired porphyrin trimers 15 and 17 were both isolated in 22%
yield.22
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Scheme 4. Synthesis of porphyrin trimer 17 via Sonogashira cross-coupling.
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The results indicate that it is not important for the outcome of
the reaction how close the ethynyl group is to the porphyrin moi-
ety. It also shows the potential utility of this approach to prepare
even larger porphyrin arrays using this method by attaching oli-
goporphyrins to the triptycene unit.

In summary, 2,6,14-triiodotriptycene 4 was generated in a
three-step synthesis from commercially available triptycene.
Treatment of the borylated porphyrins 8–10 with 4 under Suzuki
cross-coupling conditions afforded the desired porphyrin trimers
11–13 in unoptimised yields of 16–22%. Likewise, the reaction of
the ethynylporphyrins 14 and 16 under Sonogashira conditions
gave the target compounds 15 and 17 in unoptimised yields of
22%. These synthetic pathways therefore provide a straightforward
approach for the design of rigid porphyrin trimers, and have
opened up access to a new class of porphyrin arrays. We are cur-
rently optimising the reactions, extending them to the coupling
of oligoporphyrins and the use of such units in dendritic porphyrin
arrays.
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